Crispr/Cas9 Target Prediction with Deep Learning
نویسندگان
چکیده
منابع مشابه
Deep Learning for Drug Target Prediction
An important computational tool in drug design is target prediction where either for a given chemical structure the interacting biomolecules (e.g. proteins) must be identified. Chemical structures interact with different biomolecules if they have similar 3D structure. Thus, the outputs of the prediction are highly interdependent from each other. Furthermore, we have partially labelled molecules...
متن کاملDeep Representation Learning with Target Coding
We consider the problem of learning deep representation when target labels are available. In this paper, we show that there exists intrinsic relationship between target coding and feature representation learning in deep networks. Specifically, we found that distributed binary code with error correcting capability is more capable of encouraging discriminative features, in comparison to the 1-of-...
متن کاملDeepDTA: Deep Drug-Target Binding Affinity Prediction
The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملToxicity Prediction using Deep Learning
Everyday we are exposed to various chemicals via food additives, cleaning and cosmetic products and medicines — and some of them might be toxic. However testing the toxicity of all existing compounds by biological experiments is neither financially nor logistically feasible. Therefore the government agencies NIH, EPA and FDA launched the Tox21 Data Challenge within the “Toxicology in the 21st C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Journal of Scientific & Technical Research
سال: 2019
ISSN: 2574-1241
DOI: 10.26717/bjstr.2019.21.003652